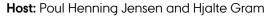
DANDRITE Topical Seminar

Patient cerebrospinal fluid derived α Synuclein fibrils from Parkinson's Disease and Multiple System Atrophy have different folds and cellular inclusion pathology

Aggregation of α -synuclein (α Syn) fibrils is linked to neurodegenerative synucleinopathies, including Parkinson's disease (PD) and Multiple System Atrophy (MSA). α Syn fibrils exhibit disease-specific structural polymorphisms, with three main types characterized so far: in vitro, brain-derived (ex vivo), and brain-seeded fibrils. Although brain-derived fibrils are the structural benchmark, they are only accessible post-mortem. As a non-invasive alternative, cerebrospinal fluid (CSF)-derived fibrils offer potential for early diagnosis. CSF-seeded fibrils, amplified via seed amplification assays (SAA), resemble brain-derived fibrils but lack high-resolution structural characterization. To address this, we used SAA to amplify uniformly ${}^{13}C$, ${}^{15}N$ -labeled α Syn from CSF of PD and MSA patients, enabling detailed structural analysis. Solid-state NMR and cryo-EM revealed disease-specific fibril folds. PD fibrils showed two polymorphs: helical (~60%) and straight (~40%), while MSA fibrils formed only straight filaments (100%). HDX-MS further mapped solvent accessibility differences. Notably, CSF-derived fibrils differed significantly from brain-derived and seeded fibrils, broadening the known a Syn structural diversity. These insights highlight the need for disease-specific studies to better understand pathogenic mechanisms and guide targeted therapies for synucleinopathies.



Ümit Akbey Assistant Professor Department of Structural Biology, University of Pittsburgh, USA

Date:	Thursdo
lime:	13:00 -
/enue:	1170 - 3
Address:	Ole Wo
	8000 A

Thursday 12 June 2025 13:00 – 14:00 1170 - 347 Ole Worms Allé 3, 8000 Aarhus C

OPEN TO ALL INTERESTED.

